Travel behavior exploration (off-line)

  • ROIs discovery

    • Divide a 2D space into non-overlapping cells

      Because of uncertainty of GPS logs.
    • Determine a set of ROIs

      Calculate the number of trajectories passed with each cell. If it's greater than threshold, it's a ROI.
  • ROIs scoring

    • Transform trajecrories

      Transform each trajectory into a sequence of ROIs
Tid Sequence of ROIs (Travel Routes)
Tr1 R1 --> R4 --> R7
Tr2 R2 --> R5 --> R7 --> R4 --> R5 --> R6
    • Construct a user movement graph

    • Weight of edge < Ri,Rj > is

      w<Ri,Rj>=TrhTRD,<Ri,Rj>Trh1deg+(RiTrh)Rlκ,RiRj{TrkRrkTRD,<Ri,Rl>Trk} w<R_{i},R_{j}>=\frac{ \sum_{Tr_{h}\in TRD,<R_{i},R_{j}>\subset Tr_{h}} \frac{1}{deg^{+}(R_{i}|Tr_{h})}}{\left | \bigcup_{ R_{l}\in \kappa , R_{i}\neq R_{j}} \left \{ Tr_{k}|Rr_{k}\in TRD, <R_{i},R_{l}> \subset Tr_{k} \right \} \right |}

      where deg+(RiTr)={Rj<Ri,Rj>Tr,RiRj}deg^+ (R_i|Tr)=|\left \{ R_j|<R_i, R_j> \subset Tr, R_i \neq R_j \right \}|

    • Attractive scores of ROIs

      Iteratively compute it until scores converge.

      (Si(R1)Si(R2)Si(Rm))=M(1Si1(R1)Si1(Rm)) \begin{pmatrix} S^i(R_1)\\S^i(R_2)\\ \vdots \\S^i(R_m) \end{pmatrix} = M\cdot \begin{pmatrix} 1\\ S^{i-1}(R_1)\\ \vdots\\ S^{i-1}(R_m) \end{pmatrix} where

    • M=(1ααω<R1,R1>αω<Rm,R1>1ααω<R1,R1>αω<Rm,R2>1ααω<R1,R1>αω<Rm,R2>)M=\begin{pmatrix} 1-\alpha & \alpha \cdot \omega_{<R_1,R_1> } & \cdots & \alpha \cdot \omega_{<R_m,R_1>}\\ 1-\alpha & \alpha \cdot \omega_{<R_1,R_1> } & \cdots & \alpha \cdot \omega_{<R_m,R_2>}\\ \vdots & & \ddots & \\ 1-\alpha & \alpha \cdot \omega_{<R_1,R_1> } & \cdots & \alpha \cdot \omega_{<R_m,R_2>}\\ \end{pmatrix}

    • parameter α=[0,1)\alpha = [0,1)
    • ω<Ri,Rj>=0\omega <R_i,R_j> = 0

      Use above function to calculate attractive score of each ROI.

results matching ""

    No results matching ""